Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-[(ρ-Methoxyphenylcarbonyl)(1,2,4-triazol-1-yl)methyl]sulfanyl-4,6dimethylpyrimidine

Fangfang Jian,* Hailian Xiao and Liangzhong Xu

New Materials and Function, Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, Peoples Republic of China

Correspondence e-mail: ffj2003@163169.net

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.045$
$w R$ factor $=0.125$
Data-to-parameter ratio $=14.3$

For details of how these key indicators were automatically derived from the article, see
http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$, the dihedral angles between the plane of the 4,6-dimethyl-2-mercaptopyrimidine group and the plane of the triazole and p-methoxyphenylcarbonyl groups are $79.64(2)$ and $0.44(2)^{\circ}$, respectively. There are weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular interactions between the molecules in the crystal lattice.

Comment

As an important type of fungicides, triazole compounds are highly efficient, of low toxicity and capable of being absorbed through the stomach and intestines (Anderson, 1982; Shi et al., 1995; Xu et al., 2002). At present, the studies on triazole derivatives are mainly concentrated on compounds with triazole as the only active group. Reports of triazole compounds containing both a triazole group and another active group in a single molecule are rare. Some pyrimidines have been used as highly efficient fungicides of low toxicity (Tang \& Li, 1998) in the control of powdery mildew. In this paper, we report the single-crystal structure of the title compound, (I).

In (I), the bond lengths and angles are generally normal in the phenyl ring and the triazole ring (Ji et al., 2002; Liu et al., 2002). The bond lengths and angles in the 4,6-dimethyl-2mercaptopyrimidine group are in good agreement with an earlier report (Low et al., 2002). Atom C9 of the central chain lies in the triazole ring ($\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 11 / \mathrm{N} 3 / \mathrm{C} 10$) plane, and the deviation from the least-squares plane through the ring atoms is smaller than 0.023 (3) \AA. The atoms of the central chain (C5/ $\mathrm{C} 8 / \mathrm{O} 2 / \mathrm{C} 9 / \mathrm{S} 1 / \mathrm{C} 12$) are almost planar, with a maximum displacement of 0.236 (2) \AA for C12. The dihedral angles formed by the pyrimidine, phenyl and triazole planes with the central chain (C5/C8/O2/C9/S1/C12) are 9.85 (4), 10.29 (6) and $80.70(8)^{\circ}$, respectively. The methoxy O1 and carbonyl C8 atoms lie in the $\mathrm{C} 2-\mathrm{C} 7$ phenyl plane, and the largest deviation from the least-squares plane through the ring atoms is 0.026 (3) A. The dihedral angle between the triazole ring moiety and the phenyl ring is $79.22(2)^{\circ}$. Nine non-H atoms in the 4,6-dimethyl-2-mercaptopyrimidine group are also reasonably coplanar, and the largest deviation from the leastsquares plane is 0.021 (3) \AA. This plane is nearly parallel to the plane of the p-methoxyphenylcarbonyl group, with a dihedral

Received 19 September 2003 Accepted 30 September 2003 Online 7 October 2003

The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

A view of the packing of the title compound.
angle of $0.44(2)^{\circ}$. The dihedral angle between the plane of the 4,6-dimethyl-2-mercaptopyrimidine group with the plane of the triazole moiety is 79.64 (2) ${ }^{\circ}$.

Packing is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions (Table 2) (Steiner, 1996; Jeffrey et al., 1985).

Experimental

The title compound was prepared by reaction of (1,2,4-triazol-1-$\mathrm{yl})(\rho$-methoxyphenylcarbonyl)methane with 4,6-dimethyl-2-thioetherpyrimidine in chloroform. Single crystals of the title compound
suitable for X-ray measurements were obtained by recrystallization from ethyl ethanoate/cyclohexane ($v / v=1: 3$) at room temperature.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=355.42$
Monoclinic, $P 2_{1} / c$
$a=8.0158$ (16) \AA
$b=12.462$ (3) A
$c=17.824$ (4) \AA
$\beta=99.89$ (3) ${ }^{\circ}$
$V=1754.0$ (7) \AA^{3}
$Z=4$
$D_{x}=1.346 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
Cell parameters from 20
reflections
$\theta=2-11^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Pillar, yellow
$0.25 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection
Oxford Instruments point-detector

$$
\theta_{\max }=25.9^{\circ}
$$

$h=-9 \rightarrow 9$
diffractometer
$k=0 \rightarrow 15$
$\theta / 2 \theta$ scans
$l=-21 \rightarrow 21$
3 standard reflections every 100 reflections intensity decay: 0.9%
3257 independent reflections
2334 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.125$
$S=1.04$
3257 reflections
227 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0696 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0062 (12)

Table 1
Selected geometric parameters (\AA).

S1-C12	$1.775(3)$	O1-C1	$1.429(3)$
S1-C9	$1.816(2)$	O2-C8	$1.215(3)$
O1-C2	$1.364(3)$	N1-N2	$1.368(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C3-H3B $\cdots \mathrm{O}^{2}{ }^{\mathrm{i}}$	0.93	2.52	$3.409(2)$	159
C6-H6A $\cdots{ }^{\text {ii }}$	0.93	2.57	$3.340(3)$	139
C9-H9A ${ }^{-} 5$	0.98	2.47	$2.840(3)$	102
C10-H10A $\cdots \mathrm{N} 5$	0.93	2.58	$3.054(3)$	111

Symmetry codes: (i) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $1-x, 1-y, 1-z$.
The H atoms were fixed geometrically and were treated as riding on the parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$. $U_{\text {iso }}=1.2$ and 1.5 times $U_{\text {eq }}$ of the parent atom.

Data collection: R-AXIS Software (Rigaku, 1997); cell refinement: R-AXIS Software; data reduction: R-AXIS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Natural Science Foundation of Shandong Province (No. Y2002B06).

References

Anderson, N. H. (1982). Proceedings of the 5th International Congress of Pesticide Chemistry (IUPAC), Kyoto, Japan, 1982, p. 345.

Farrugia, L. J. (1999). J. Appl. Cryst 32, 837-838.
Jeffrey, G. A., Maluszynska, H. \& Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336-341.
Ji, B. M., Du, C. X., Zhu, Y. \& Wang, Y. (2002). Chin. J. Struct. Chem. 21, 252255.

Liu, J. C., Guo, G. C., Ma, H. W., Yang, C., Zhou, G. W., Zheng, F. K., Lin, S. H., Wang, M. S. \& Huang, J. S. (2002). Chin. J. Struct. Chem. 21, 371-373.
Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. \& Glidewell, C. (2002). Acta Cryst. C58, o289-o290.

Rigaku (1997). R-AXIS Software. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1990). SHELXTL/PC User's Manual.Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, Y. N., Lu, Y. C. \& Fang, J. X. (1995). Chem. J. Chin. Univ. 16, 1710-1713. Steiner, T. (1996). Crystallogr. Rev, 6, 1-35.
Tang, C. C., Li, Y. C., Chen, B., Yang, H. Z. \& Jin, G. Y. (1998). Pesticide Chemistry, pp. 345-400. Tianjin: Nankai University.
Xu, L. Z., Zhang, S. S. \& Li, H. J. (2002). Chem. Res. Chin. Univ. 18, $284-$ 286.

